
American Journal of Science and Engineering, Vol. 1, No. 1, 2012

Corresponding Author: Ling Wang, Email Address: wangling@hit.edu.cn 30

A Joint Scheduling and Mapping Method

for Dynamically Reconfigurable SoCs Interconnected

by an on-chip Mesh Network

Ling Wanga, Xiangnan Suia, Yingtao Jiangb

a School of Computer science and technology, Harbin Institute of Technology, Harbin China

b Department of Computer and Electrical Engineering, University of Nevada, Las Vegas, USA

Abstract—Reconfigurable SoC interconnected by

an NoC architecture mandates a low power and

small footprint reconfiguration scheme that enables

multiple applications to effectively share precious

hardware resources. The trade-offs between the

static compilation and the dynamic reconfiguration

has yet to be evaluated at the highest possible

abstraction level of the NoC designs. In this paper,

reconfiguration is thus considered during the

application scheduling and mapping stage. That is,

for a given set of applications which target to run on

a dynamically reconfigurable NoC architecture, a

schedule and map of these applications needs to be

found to minimize the communication cost, while

satisfying the timing, area and other applicable

design constraints. The proposed solution follows a

three-step design flow. In the first task scheduling

step, multiple applications are scheduled to a

minimal number of processor nodes while meeting

the timing constraints. Next, applications that shall

be mapped onto the same hardware resource but run

at the different time instances through hardware

reconfiguration are merged. In this step, effort is

dedicated to minimize the reconfiguration cost. In

the last step, all the applications are finally mapped

onto the targeted NoC architecture. The experiment

results have shown that the proposed method has

achieved 50% area reduction than a conventional

scheme that does not consider reconfiguration cost.

Keywords—NoC, Mapping, scheduling,

reconfiguretion

I. Introduction

SoC (Systems on Chip) designs have shown

rapid growth in complexity with an increasing

number of integrated processors, memory,

accelerators, and various other types of IP cores

[5][20]. Networks on chip (NoC), due to their

structural advantages and modularity [2], have

emerged as the design paradigm for connecting the

many on-chip cores in SoCs. The choice of network

topology as well as mapping and routing strategies

adopted has direct implications on the network

merits, such as the average inter-IP distance, the

total wire length, and the communication load

distributions, which in turn, determine the power

consumption and the average latency of the

network. The topologies proposed for on-chip

networks vary significantly from regular, tiled-

based architectures [5][6] to fully customized ones

[7][10][11]. Since a fully customized NoC is

designed and optimized for a specific application, it

gives the best performance and power results just

for that application. On the other hand,

reconfigurable NoCs, where network topology,

routing protocols and even some of the IP cores can

be altered, can deliver the optimal performance and

power result across all the target applications.

Through reconfiguration, hardware resources can be

optimized for each application that often has

different functionalities and communication

characteristics from the other applications. Yet in

this case, the trade-offs between the static

compilation and the dynamic reconfiguration have

to be carefully evaluated at the highest possible

abstraction level of the NoC designs, particularly at

the application scheduling and mapping level.

 There have been several studies that attempt to

deal with mapping of the multiple applications onto

reconfigurable NoC architectures [8, 9]. In [8], a

worst-case-based mapping method was proposed,

where the cores and the NoC are mapped to satisfy

the most serious constraints imposed by all the target

applications. In [9], a method that maps multiple

applications based on the traffic characteristics of a

single application was proposed. After application

mapping, a reconfigurable NoC is created by

embedding programmable switches between any two

routers of a mesh-based NoC, but these

programmable switches unfortunately have very

high area penalty which can impose a serious

problem to NoC designs. Even more noticeable,

neither of the two schemes [8, 9] has considered

reconfiguration cost during the mapping and route

determination process.

 One big drawback of these approaches is that

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 31

they all target to find a suitable mapping solution

without considering the cost associated with

dynamic reconfiguration. In [18], a mapping flow is

proposed for dynamic reconfigurable platform where

reconfiguration cost is indeed minimized along with

communication cost. However, scheduling, which

preferably shall be considered along with the

mapping, is actually absent from the proposed flow.

 To address the above problems, a scheduling and

mapping scheme is proposed, and this new scheme

attempts to balance both the reconfiguration cost and

the communication link cost. That is, in the core

mapping phase, rather than mapping tasks directly

onto the physical NoC, tasks are first mapped to

virtual cores, which are then mapped onto the

physical NoC. The proposed scheme thus is divided

three major steps which include scheduling, core

mapping, and eventually NoC architecture

generation.

In this paper, to overcome the aforementioned

problems, an integrated scheduling and mapping

scheme is proposed. In specific, when scheduling is

performed, each task of the target applications will

be first scheduled to virtual cores, after which these

virtual cores will be mapped to the physical cores of

a NoC. Note that reconfiguration cost is considered

along this scheduling and mapping process, and thus

the communication cost will be eventually

minimized.

The rest of the paper is organized as follows. In

Section 2, a general dynamically reconfigurable NoC

architecture is briefly introduced. The design flow

and a motivation example are presented in Section 3.

The three phases of the proposed design scheme are

detailed in Section 4. Experiment results are reported

in Section 5, and conclusions are finally drawn in

Section 6.

II. Dynamically Reconfigurable NoCs

In a reconfigurable, mesh-based interconnection

network that is of a concern to this paper, a router is

connected directly to its adjacent routers and all the

routers are connected to a reconfiguration controller,

as shown in Fig. 1 [16]. Here the Reconfiguration

Controller (RC) is tasked to control the

reconfiguration process, and its basic components

include the Repository, the Configuration Port (CP)

and the Reconfigurable Interface (RI). The

Repository contains a memory unit that stores the

reconfigurable modules’ configuration data, bearing

a great similarity to the configuration files used for

configuring an FPGA chip. The RI is necessary to

implement a static routing between a reconfigurable

module and the rest of the system. All the

reconfiguration-related activities, including changes

of network topology, routing protocols and/or IP

cores, are controlled by this reconfiguration

controller. In general, dynamic hardware

reconfiguration can only be implemented on

dynamically reconfigurable devices. Thus, FPGAs

are used in this study.

Memory

Reconfiguration

Controller

Configuration Port

Router

Router Network

Interface

R
e
c
o

n
f
i
g

u
r
a

b
l
e

I
n

t
e
r
f
a

c
e

IP Core

Network-on-Chip

Network
ID

Register

Reconfiguration

Region

Configuration

Command
Router

Router

Fig. 1. The Reconfigurable NoC model

III. Problem Formulations

Definition 1: A task graph TG (V, E) is an

acyclic directed graph that represents an application,

with each vertex vi ∈V, representing a task, and an

edge between two vertices vi and vj, denoted as e(vi,

vj) ∈E, representing a communication link between

vi and vj. The weight of edge e(vi, vj) represents the

communication bandwidth required between vi and vj.

Definition 2: A core graph VP (U, L) is an

undirected graph, with each vertex ui ∈U

representing a virtual core node, and the edge

between two vertices ui and uj, denoted as l(ui, uj)

∈L, representing a communication link between ui

and uj. The weight of edge l(ui, uj) represents the

communication bandwidth between ui and uj.

Definition 3: An NoC topology architecture

graph AG (Q, R) is an undirected graph, with each

vertex qi ∈Q representing a core node in the NoC

topology and the edge between two vertices qi and qj,

denoted as r (qi, qj) ∈R, representing a

communication link between qi and qj. The weight of

edge r (qi, qj) represents the communication

bandwidth between qi and qj.

 The problem that attempts to schedule and map

multiple applications onto an Network-on-Chip

architecture is defined as follows:

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 32

Given a set of applications, applications 1,

2, …i,…, A, represented by a set of task graphs, TG

= { TGi (Ti, Ri), i=1，…, || A }, and a number of IP

cores, find a mesh architecture AG that connects all

the IPs, and schedule and map these applications

onto these IP cores with minimum communication

cost,

))(,(()(
1

jj

E

j

j edestesourcedisteBtotalcom

while satisfying the area and timing constraints. Here

(i) area is determined as the number of mapped

nodes on the AG;

(ii) timing is defined as the scheduling time of the

TG;

(iii) ej is the flow in the input task graphs TG and E

is the total number of flows of TG;

(iv) B(ej) is the bandwidth of the flow ej in the

topology architecture described as AG;

(v) Source(ej) and dest(ej) represent the source and

the destination nodes of flow ej in the TG,

respectively;

(vi) dist(source(ej), dest(ej)) represents the hop count

between source(ej) and dest(ej) with pre-determined

routes in AG, assuming XY routing is adopted.

 The above problem is a special case of processor

scheduling that is known as NP-complete. Thus, a

heuristic algorithm is developed to solve the above

problem. In the literature, various topologies [2],

including Mesh, torus, GNLS [16] and etc., have

been proposed for NoC designs. In this paper,

although we concentrate on the mesh topology, the

proposed method can be readily applied to other

topologies.

IV. Design Flow of Scheduling and Mapping

Applications onto Reconfigurable NoCs

An example is given to illustrate how system

performance is impacted when reconfiguration is

considered during the scheduling and mapping stage.

Two parallel applications a1 and a2 are shown in

Fig.2.a and 2.b, respectively, and their respective

core graphs generated after scheduling are shown in

Fig.2.c and 2.d.

If reconfiguration cost is not considered during

scheduling/mapping, these two core graphs (Fig. 2.c

and 2.d) are mapped to the topology one at a time.

As a result, the total communication cost is 140 and

the area cost is 5 (Fig. 2.g). But if reconfiguration

cost is considered after scheduling, one can see that

as V2 and V3 run at different time slots, they

actually can be reconfigured and mapped to the same

core as shown in Fig. 2.e. As such, the area cost now

drops to 4, and its total communication cost is 132,

as shown in Fig. 2.h. Further reduction of the

reconfiguration cost is possible. Instead of having

V2 and V3 run on the same core through

reconfiguration, if V2 and V4 are actually mapped to

the same core, as shown in Fig. 2.f, the area cost

after scheduling and mapping remains 4, but the total

communication cost decreases to just 127 (Fig. 2.i).

IP0 IP1

IP2_3 IP4

T2

T1

T3 T4

T5

20 45 30

6 60 T2

T1

T3

T4 T5

25
10

35 20

V0

V1 V26

45 30

V0

V1 V3

10 35

V4

20

V0

V1 6

45 35

V4

20

V0

V1 V2_46

45 30

V3

20

IP0 IP1

IP3 IP4

IP2 IP0 IP1

IP2_4 IP4

(a) (b)

(c) (d)

(f)(e)

(g) (h) (i)

V2_3

Cost=140 Cost=132 Cost=127

Task graph1 Task graph2

a1 a2

Without reconfiguration Reconfiguration,without optimization Reconfiguration,optimized

V2,V3 merged V2,V4 merged

Multi-

application

Combination

Scheduling

Mapping

Fig. 2 An example showing Scheduling and Mapping with and without

task merging through reconfiguration

The example illustrated in Fig. 2 has clearly

indicated that communication cost can be effectively

reduced without incurring additional hardware cost,

if optimization on reconfiguration is performed

along with scheduling and mapping.

This study thus attempts to develop a scheme

that can effectively schedule and maps applications

onto multiple IP cores, meanwhile taking into

account of the reconfiguration cost. Due to its NP-

completeness in nature, we attempt to solve the

problem following a design flow that includes three

phases:

(1) During the scheduling phase (Phase 1),

applications are scheduled onto the minimal number

of virtual cores (as opposed to the physical IP cores)

while meeting all the governing timing constraints.

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 33

(2) During the application merging phase (Phase

2), applications that can share the same virtual core

but run at different time slots are identified, and

these applications are thus considered to be merged

to minimize the reconfiguration cost.

(3) During the final mapping phase (Phase 3),

virtual cores are mapped to the physical cores in the

way that the communication cost can be minimized.

Note that the final NoC architecture is generated at

this step.

4.1. Phase 1: Task scheduling

In this phase, the proposed task scheduling

algorithm takes the number of virtual cores and the

application task graphs as its input. Note that, instead

of directly mapping tasks to physical cores

connected by a NoC architecture, we actually

schedule them onto virtual cores. The number of

virtual cores can be equal to or greater than the

number of physical cores. In our current

implementation, the number of the virtual cores is

set to be the same as that of the physical cores. The

main idea of this scheduling step is to put the tasks

into the same group if their run times do not overlap,

and then assign one virtual core to each task group.

4.1.1. Scheduling Algorithm

This algorithm tries to find a schedule for each

application represented by a task graph. The input to

the algorithm is the task graph of an application, and

the output is a core graph represented by virtual

cores and their connections. For simplicity, run time

of each task on a virtual core is set to be exactly one

cycle. The objective of this scheduling algorithm is

to minimize the number of virtual cores in the output

graph under the timing constraint. There are three

major steps in the algorithm.

Step 1, tasks are sorted by an ascending order of

their start times.

Step 2, schedule the task in the task list that has

the earliest start time (i.e., the first entry of the task

list) onto an available virtual core. Once a task is

scheduled, it will be deleted from the task list.

Repeat this process until all the tasks have been

scheduled.

Step 3, after all the tasks in the input task graphs

have been scheduled onto the virtual cores, the

connections among virtual cores have to be

determined, following a policy given below:

--If two tasks in the task graph are scheduled

onto the same virtual core, there is no need to add an

edge between them.

--If two task in the task graph are determined to

be scheduled onto two different cores, we need to (i)

either find two virtual cores between which an edge

shall be added, or (ii) specify the communication

bandwidth between the two tasks, when an edge

already exists between the two virtual cores.

Detailed scheduling algorithm is given below.

TaskScheduling {

Input:

T: Task Graph

P: list of available Virtual Core (VP) cores

Nv: the number of VP cores

Output:

The Core Graph of the application // see Def. 2

in Section II

Variable Declarations:

 Here Q[v] records the time when virtual core,

node v, becomes available;

D[v] records the set of tasks running at each IP

core;
R

sT records the start time of task R;

R

rT records the run time needed to complete

task R;
R

sT +
R

rT gives the scheduled time to complete

task R.

Procedure body:

// Step 1

(1) Initialize array Q[v] of each VP core by

setting array Q[v] to null, here v=1, 2,…Nv.

(2) Initialize the task set of each VP core by

setting array D[v] to null, here v=1, 2,…Nv.;

(3) Sort the tasks in ascending order of start time

and save the sorted tasks as task list T’;

// Step 2

(4) If T’ is not empty, assign the first element in

T’ to R, and then delete this element from T’;

(5) Select node v from P such that Q[v] is

minimized;

(6) Schedule R to v by assigning the start time

and run time to R;

(7) Update Q[v] by having Q[v] <=
R

sT +
R

rT

(8) Add the first task in the list T’ to D[v]

(9) Repeat lines between 4 and 8 until all the

tasks in T’ have been mapped onto VP cores.

// Step 3

(10) Add edges among Q[v];

(11) Return the generated Core Graph;

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 34

}

The complexity of this scheduling algorithm is

bounded by the number of virtual cores. As each

application is scheduled onto a virtual core through a

two-loop iteration, the complexity of this algorithm

is O(|Nv|
2
), where Nv is the number of virtual cores

to be scheduled.

4.1.2. An Illustrative Example

We take the benchmark from TGFF [17] as an

example to illustrate the proposed task scheduling

algorithm. As can be seen from Fig. 3, there are 13

task nodes, of which maximum 5 tasks can be

allowed to start at the same time. In this regard, at

least 5 VP cores are needed to run all the tasks. The

scheduling result after applying the proposed task

scheduling algorithm is thus given as Fig. 4.

0

1

2

3 4 5 6 7

8 9 10 11 12

d=400 d=400 d=400 d=400 d=400

d=500 d=500 d=500 d=500 d=500

Fig. 3 A benchmark from TGFF[17]

Fig. 4 Scheduling Result for the benchmark shown in Fig. 3

 From Fig. 4, one can see that tasks 0, 5 and 10

have been scheduled to execute on virtual core 0 at

the 0
th
, the 1

st
, and the 2

nd
 clock cycles, respectively.

The other tasks have also been scheduled to execute

on other virtual processors. The output core graph

after task scheduling is shown in Fig. 5, where the

weight of each edge corresponds to the

communication cost between the two connecting

VCs. For instance, communication cost between

VP0 and VP1 is 491.

VP0

VP3 VP4

VP1

VP2

1481

491

1476

997
975

Fig. 5 Core Graph generated after task scheduling as shown in Fig.. 4

4.2. Phase 2: Merge of Multiple Applications and

Minimization of Reconfiguration Cost

In Phase 2, the proposed algorithm takes the core

graphs (each consists of virtual cores and weighted

edges) obtained from phase 1 as its input, while the

output is one merged core graph. The objective here

is to minimize the number of virtual cores in the

output core graph while satisfying the timing

constraints.

4.2.1. Algorithm Description

This algorithm attempts to find two graphs, from

the output core graphs obtained in Phase 1, that can

be merged into one graph. This core graph merging

process is repeated until no more graphs can be

merged.

When an edge is identified to be merged with an

existing edge, bandwidth between the two

connecting virtual cores has to be updated to take the

higher weight of the two edges. Then, two nodes can

be merged assuming the longest communication

bandwidth is maintained.

GraphMerging {

Input:

Two applications, Application1 and Application

2, represented by their respective core graphs cg1,

and cg2

MT is set as time constraint condition

Output:

 A core graph

Time

VP2

VP1

VP4

VP3

V
P

 C
o

re
s

0 C 2C 3C

VP0 0 5 10

1 6 11

2 7 12

3 8

4 9

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 35

Variable Declarations:

 BW is the total communication bandwidth of a

data flow graph.

OptimalCombine(cg1, cg2, MT){

1) Merge common Virtual Core (VP) cores of cg2

to cg1;

2) Sort VP cores in cg2 according to ascending

order of their total communication bandwidths, and

put them into a list, L;

3) If L is empty, go to Step 9;

4) Get the first element (VP core) of L, and is

recorded as n;

5) Find core m from cg1 so that merging m with n

will lead to the smallest BW;

6) If MT >0 then merge VP core n with m and

then MT = MT-1;

7) Else Add n into dfg1 as a new VP core;

8) Delete n from L and go back to step3;

9) Update bandwidths of all the edges;

}

The complexity of the algorithm is determined by

finding the virtual cores from the two input core

graphs that shall be merged. For each virtual core of

one graph (cg1), all the cores of the other graph (cg2)

have to be traversed once (Step 5). The timing

complexity is thus O (21 NN), where N1and N2

are cg1 and cg2’s numbers of the virtual cores,

respectively.

IP1

IP2 IP320

10 15

IP4

25

cg1 (a)

IP1

IP2 IP510

15 25

IP6

15

cg2 (b)

IP1

IP2 IP3_5
10

15 25

IP4_6

25

20

 (c)

Fig.6 An Example showing merging of two core graphs (cg1 and cg2) to
form a new core graph shown in (c) while minimizing communication

bandwidth

4.2.2. An Illustrative Example

Suppose there are two core graphs, cg1 and cg2,

derived from two applications, shown in Figs. 6.a

and 6.b, respectively, and the timing constraint is set

as 2. During the merging process, virtual cores IP1

and IP 2 in cg2 are first merged with the same virtual

cores in cg1. Next, IP 5 and IP 6 in cg2 are put into

the list L. After searching through cg1, IP3 in cg1 is

merged with IP5 in cg2 since merging of these two

will result in the lowest BW while still satisfying the

timing constraints. Next, IP4 in cg1 and IP6 in cg2

are merged. Eventually, the merged core graph, with

a communication bandwidth of 95, is shown in Fig.

6.c.

4.3. Phase 3: NoC mapping and optimization

The input of this phase is one core graph

consisting of virtual cores and edges. The output of

this phase is an mapped NoC architecture. The

objective of this mapping step is to minimize the

communcaiton cost under the timing and area

constraints. There are three major steps in this

algorithm. In the first step, an initial mapping is

obtained, followed by a step where minimum path

routing computation is performed. In the last step,

the initial solution is iteratively improved by pair-

wise swapping of nodes, and finally the NoC

architecture is generated. That is, this algorithm

attempts to map all the virtual cores to the physical

cores of the NoC. As two or more virtual cores may

be mapped to one core on NoC, communication cost

of the NoC has to be considered in this phase.

4.3.1. Initialization

 At the beginning, a mesh topology is first created

with the minimum number of cores that shall be able

to accommodate all the cores in the core graph. That

is, for a core graph with N cores, a N by N

mesh needs to be created. For instance, if there are 8

cores in the merged core graph, a mesh with 9 cores

is created. The virtual core with the largest number

of neighbors in the core graph is first mapped to an

available core in the mesh with the largest number of

neighbors. Next, of the core that have not to be

mapped, the one which has the highest

communication cost with the already mapped cores

is selected for mapping. This procedure is repeated

until all the cores in the core graph have been

mapped onto the mesh architecture.

4.3.2. Routing Determination

The shortest routing is performed after the initial

mapping. The total communication cost can be

calculated using the shortest paths between any pairs

of the source and the destination nodes. A quadrant

graph is created between the source and the

destination, as the shortest path between the source

and the destination sits within the quadrant that they

belong to. Then, Dijkstra’s shortest path algorithm is

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 36

applied to the quadrant graph and the minimum path

is obtained.

4.3.3. Mapping Optimization and NoC Architecture

Generation

In this phase, a heuristic simulate-annealing-based

algorithm is used to generate the final mapped NoC

topology with the minimum total communication

cost. In essence, a pair of nodes are selected from the

initial mesh (Section 4.3.1) and they get swapped,

after which routing is performed to calculate the

corresponding communication cost. If the

communication cost of this newly mapped NoC

topology is lower, it will be considered as a better

solution and optimization will continue from this

updated topology. Above procedure is repeated until

no further optimization is possible, and the mapped

NoC topology is finally generated. The complexity

of this routine is relative to size of the mesh. As the

number of nodes increases, there will be greater

opportunities for node swapping.

 V. Experimental Results

To evaluate the performance of the proposed

algorithms as described in Section 4, a couple of

experiments using an in-house developed platform

have been performed. In specific, a 2D mesh-based

NoC is designed with 16-bit wide channels. Routers

in this NoC support wormhole packet switching and

deterministic XY routing. Benchmarks include

TGFF suites [17] and real-world applications.

In this first set of experiments, we apply the

proposed algorithm to TGFF Benchmarks. Table 1

reports the scheduling results of 4 TGFF benchmarks

after phase 1 (Section 4.1) is completed. In the

second and third columns of the same table, the

numbers of the nodes and the edges of the input task

graphs are given,

respectively. For comparison, the fourth and the fifth

columns, respectively, report the numbers of nodes

and edges in the output core graph.

Table 1. Scheduling Results (Phase 1 described in Section 4.1)

Bench

mark

No.

Nodes

At
TG

No. of

Edges at

Task
graph

No. of

Nodes

at
Core

Graph

No.of

Edges at

Core
graph

Schedul-

ing

Time
 (Cycles)

tgff1

23

31 6 11 35

tgff2

18

23 5 9 30

tgff3

12

14 4 5 25

tgff4

15

22 4 6 30

The scheduling time is given in the sixth column,

where each node is assumed to run at 5 clock cycles.

It can be seen that after scheduling, the number of

cores in the output core graph is much less than that

of the tasks in the input task graph. Some tasks are

scheduled to the same core to reduce the number of

the nodes in the output core graph. The number of

communication edges in the output core graph is also

much lower than that of the input task graph for the

same reason.

Table 2. Task Graph Merging Results

Bench

mark

Nodes Edge

s

Scheduling

Time

(Cycles)
Before

Scheduling

Time

(Cycles)
After

tgff1* tgff3 6 11 80 60

tgff2* tgff4 5 9 75 60

tgff2* tgff3

*tgff4 5 9

100

85

tgff1*tgff2*
tgff3*tgff4 6 13

135 125

In the second column of Table 2, various

combinations of TGFF benchmarks are shown. For

instance, benchmark tgff1*tgff3 indicates that the

core graphs of tgff1 and tgff3 are merged. In

tgff1*tgff3, there are 6 nodes (the third column) and

11 edges (the forth column). When tgff1 and tgff3

are executed in series, a total of 80 cycles is needed

(the fifth column) as opposed to 60 cycles needed to

schedule merged graph tgff1*tgff3 (the sixth

column). In this case, the scheduling time of the

merged graph is reduced by 15%. Here

reconfiguration time between cores is set to be 2

cycles.

As certain cores can be reused through

reconfiguration, the number of cores (nodes) in the

merged graph is reduced dramatically, as shown in

Fig. 7, which can be translated into significant area

saving. Take the tgff1*tgff3 as an example: the

number of cores is reduced.

0

10

20

1 2 3 4

IPCoresUnCombined IPCoresCombined

Fig. 7 the number of cores before the merging of the core graphs vs. the

number of cores after the merging

from 10 (before merging) down to 6 (after merging).

Finally, a merged graph is mapped to the actual

mesh NoC, and the final mapping results are

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 37

tabulated in Table 3. In our experiment, we define a

hotspot on an NoC is a core that experiences 30%

more traffic than an average core. In the third

column, the number of hotspots on the NoC for each

application after final mapping is given. For instance,

both tgff1*tgff2 and tgff2*tgff4 have 2 hotspot while

for the other two applications, each has 3 hotspots. It

is shown that our algorithm applying on NoC with

more hotspots can achieve more reductions on

communication cost.

Table 3 Mapping Results of Various Applications onto NoCs

Benchmark No.

Cores

Hot

Spot

Initial

Comm.

Cost

without
reconfiguration

Optimal

Comm.

Cost with

reconfiguration

tgff1*

tgff3

6 2 1785 1664

tgff2*
tgff4

5 2 1998 1733

tgff2*tgff3

*tgff4

5 3 2014 1751

tgff1*tgff2
*

tgff3*tgff4

6 3 2788 2200

In Table 3, the initial communication cost

without reconfiguration is given in the fourth column,

while the optimal communication cost with

reconfiguration is reported in the fifth column.

For instance, an NoC with 6 cores (the second

column) is generated for benchmark tgff1*tgff3,

where 2 hotspots exist (the third column). The

communication cost without reconfiguration is 1785

(the fourth column), while the communication cost is

reduced to 1664 with reconfiguration (the fifth

column). The most significant reduction on

communication cost is achieved for benchmark

tgff1*tgff2*tgff3*tgff4 (Table 3), where

communication cost is reduced from 2788 cycles to

2200 cycles, a merely 21.2% reduction

 B Evaluation of the proposed scheme using real

applications running on a set-top box SoC

We have also evaluated the performance of the

proposed algorithm by applying it to real-world

applications. In particular, five applications run in a

SoC for set-top box are adopted, as given in Fig.8.

We present the experimental results for the

applications running on 4 different configurations: (i)

applications A1 and A2 running on P1, (ii)

applications A2, A3 and A4 on P2, (iii) applications

A1 ,A2 , A4 and A5 on P3, and (iv) applications A1,

A2, A3, A4 and A5 on P4. After the merging

algorithm is completed for each design (Phase 2 in

Section 4.2), the results are given in the Fig. 9.

The numbers of cores before and after the

merging process for all 4 designs are reported in

Fig.10.a. For P1, 14 cores is actually needed if no

core is merged (the second vertical bar in Fig. 10.a),

and that number can be reduced to 7 (the first

vertical bar in Fig. 10.a) if some cores can be shared.

Across all four designs, on average, the number of

cores needed is reduced by more than 50% with

cores can be shared among applications through

reconfiguration. Actually, one can see that the more

cores can be shared, the more significant of area

saving a design can achieve, as the case in P4.

The numbers of communication links before and

after the merging process for all 4 designs are shown

in Fig. 10.b.

filter1

input

filter2

filter3

mem1

mem2

output

50

50

100

100

50

150

200

filter1

input

filter2

filter3

mem1

mem2

output

50

50

50

100
50

150

200

50

filter1

input

filter2

filter3

mem1

mem2

output

50

50

50

100

50

150

200

50

filter1

input

filter2

filter3

mem1

mem2

output

50

50
50

150

280

50

150

filter1

input

filter2

filter3

mem1

mem2

output

50

50
50

150

280

50

50

50
50

(a) A1 (b) A2 (c) A3

(d) A4 (e) A5

Fig. 8. Five applications running on a top-box SoC

P1 P2 P4

filter1

input

filter2

filter3

mem1

mem2

output

50

50

100

100

50

150

200

50

50

filter1

input

filter2

filter3

mem1

mem2

outpu

t

50

50

100

100

150

280

50

50

150

50

50
50

filter1

input

filter2

filter3

mem1

mem2

output

50

50

50

150

280

50

100

50

100

150

50

50

P3

filter1

input

filter2

filter3

mem1

mem2

output

50

50

50

150

280

50

100

50100

100

150

50

Fig. 9. The core graphs after merging for four designs.

For P1, 15 links is actually needed if no core is

merged (the second vertical bar in Fig. 10.b), and

that number can be reduced to 9 (the first vertical bar

in Fig. 10.b) if some cores are shared. Across all four

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 38

designs, on average, the number of communication

links needed is reduced by more than 50% when

core sharing among applications is possible through

reconfiguration. Actually, one can see that the more

cores can be shared, the less communication links

needed to connect all the communicating cores, as

the case in P4.

Finally, the generated mesh architectures for

each of the four designs are shown in Fig. 11.

0

5

10

15

20

25

30

35

40

P1 P2 P3 P4

IP
Co
re
sN
ee
de
d

(a)

0

5

10

15

20

25

30

35

40

45

P1 P2 P3 P4

L
i
n
k
s
N
e
e
d
e
d

 (b)

Fig10 Experimental results for four designs (a) Core reduction due to

core sharing through reconfiguration (b) Communication link reduction
due to core sharing through reconfiguration

P1 P2 P3 P4

filter1 mem1 mem2

input filter2 filter3

output filter1

mem2 output

mem1 filter2 filter3

input

mem2 filter1

input

filter3 filter2 mem1

output

mem1 filter1

mem2

filter3 filter2 input

output

Fig.11. Optimal mesh topology generated

VI. Conclusions

In this paper, a scheduling and mapping multiple

applications on dynamically reconfigurable NoC was

proposed to help minimize the communication cost,

while satisfying the timing, area and other applicable

design constraints. To save area, applications that

can be mapped onto the same hardware resource but

run at the different time instances through

reconfiguration are identified, and the cost incurred

in reconfiguration is actually considered along with

application scheduling and mapping. The experiment

results have shown that the proposed method has

achieved 50% area reduction than a conventional

scheme that does not consider reconfiguration cost.

Acknowledgement

The authors acknowledge the support from NSF of

China (60706004 and 60876018).

 References

[1] L. Möller, R. Soares, E. Carvalho, I. Grehs, N.

Calazans, and F. Moraes, “Infrastructure for Dynamic

Reconfigurable Systems: Choices and Trade-offs,” Proc.

19th annual symposium on Integrated circuits and systems

design. 2006:41-49

[2] L. Benini and G. De Micheli. Networks on Chip: A

New SoC Paradigm. IEEE Computers. 2002:70-78

[3] S. Murali and G. De Micheli, “Bandwidth-constrained

Mapping of Cores onto NoC Architectures,” Proc. Design,

Automation and Test in Europe Conference and

Exhibition. 2004, 2: 896-901

[4] J. Hu and R. Marculescu, “Energy-Aware

Communication and Task Scheduling for Network-on-

Chip Architectures under Real-Time Constraints,” Design,

Automation and Test in Europe Conference and

Exhibition. 2004:234-239

[5] D.Bertozzi, A. Jalabert, S. Murali, R.Tamhankar, S.

Stergiou, L. Benini and G. De Micheli, “NoC Synthesis

Flow for Customized Domain Specific Multiprocessor

Systems-on-chip,” IEEE Trans. Parallel and Distributed

Systems, vol. 16, no. 2, pp. 113-159, Feb. 2005.

[6] K. Goossens, J. Dielissen, O.P. Gangwal, S. G.

Pestana, A. Radulescu and E. Rijpkema, “A Design Flow

for Application-Specific Networks on Chip with

Guaranteed Performance to Accelerate SOC Design and

Verification,” Proc. Design, Automation and Test in

Europe Conference and Exhibition. 2005:1182-1187

[7] T. Lei and S. Kumar, “A two-step Genetic Algorithm

for Mapping Task Graphs to a Network on Chip

Architecture,” Proc. Euromicro Symposium on Digital

System Design. 2003: 180-187

[8] K. Goossens, A. Radulescu and A. Hansson, “A

Unified Approach to Constrained Mapping and Routing

on Network-on-chip Architectures,” Proc. International

Conference on Hardware-Software Codesign and System

Synthesis. 2005: 75-80

[9] J.Hu and R. Marculescu, “Exploiting the Routing

Flexibility for Energy/ Performance Aware Mapping of

Regular NoC Architectures,” Design, Automation and

Test in Europe Conference and Exhibition. 2003,1:1-6

[10] S. Murali, M. Coenen, A. Radulescu, K. Goossens

and G. De Micheli, “A Methodology for Mapping

Multiple Use-Cases onto Networks on Chips,” Proc.

Design, Automation and Test in Europe Conference and

Exhibition. 2006, (1): 1-6.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(bertozzi%20%20d.%3cin%3eau)&valnm=Bertozzi%2C+D.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20jalabert%20%20a.%3cin%3eau)&valnm=Jalabert%2C+A.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20srinivasan%20murali%3cin%3eau)&valnm=Srinivasan+Murali&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20tamhankar%20%20r.%3cin%3eau)&valnm=Tamhankar%2C+R.&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20stergiou%20%20s.%3cin%3eau)&valnm=Stergiou%2C+S.&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959

American Journal of Science and Engineering, Vol. 1, No. 1, 2012

 39

[11] S. Murali, M. Coenen, A. Radulescu, K. Goossens

and G. De Micheli, “Mapping and Configuration Methods

for Multi-use-case Networks on Chips,” Proc. 11th Asia

South Pacific Design Automation Conference. 2006:1-6.

[12] A. Hansson, M. Coenen and K. Goossens,

“Undisrupted Quality-of-Service during Reconfiguration

of Multiple Applications in Networks on Chip,” Proc.

Design, Automation and Test in Europe Conference and

Exhibition. 2007: 954-959.

[13] T. T. Ye, L. Benini and G.De Micheli, “Analysis of

Power Consumption on Switch Fabrics in

NetworkRouters,” Design Automation Conference. 2002:

524-529

[14] R. Dick, D. Rhodes, and W. Wolf. “TGFF: Task

Graphs For Free,” Hardware Software Codesign

Conference, pp. 97–101, 1998.

[15]I. Beretta, V. Rana, D. Atienza, and D. Sciuto, “A

mapping flow for dynamically reconfigurable Multi-Core

System-on-chip Design,” IEEE Trans. Computer Aided

Design, vol. 30, no.8, pp.1211-1224 , Aug. 2011.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8959

