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Abstract—Reconfigurable SoC interconnected by 

an NoC architecture mandates a low power and 

small footprint reconfiguration scheme that enables 

multiple applications to effectively share precious 

hardware resources. The trade-offs between the 

static compilation and the dynamic reconfiguration 

has yet to be evaluated at the highest possible 

abstraction level of the NoC designs. In this paper, 

reconfiguration is thus considered during the 

application scheduling and mapping stage. That is, 

for a given set of applications which target to run on 

a dynamically reconfigurable NoC architecture, a 

schedule and map of these applications needs to be 

found to minimize the communication cost, while 

satisfying the timing, area and other applicable 

design constraints. The proposed solution follows a 

three-step design flow. In the first task scheduling 

step, multiple applications are scheduled to a 

minimal number of processor nodes while meeting 

the timing constraints. Next, applications that shall 

be mapped onto the same hardware resource but run 

at the different time instances through hardware 

reconfiguration are merged. In this step, effort is 

dedicated to minimize the reconfiguration cost. In 

the last step, all the applications are finally mapped 

onto the targeted NoC architecture. The experiment 

results have shown that the proposed method has 

achieved 50% area reduction than a conventional 

scheme that does not consider reconfiguration cost.  

 

Keywords—NoC, Mapping, scheduling, 

reconfiguretion 

 

I. Introduction 

 

SoC (Systems on Chip) designs have shown 

rapid growth in complexity with an increasing 

number of integrated processors, memory, 

accelerators, and various other types of IP cores 

[5][20]. Networks on chip (NoC), due to their 

structural advantages and modularity [2], have 

emerged as the design paradigm for connecting the 

many on-chip cores in SoCs. The choice of network 

topology as well as mapping and routing strategies 

adopted has direct implications on the network 

merits, such as the average inter-IP distance, the 

total wire length, and the communication load 

distributions, which in turn, determine the power 

consumption and the average latency of the 

network. The topologies proposed for on-chip 

networks vary significantly from regular, tiled-

based architectures [5][6] to fully customized ones 

[7][10][11].  Since a fully customized NoC is 

designed and optimized for a specific application, it 

gives the best performance and power results just 

for that application. On the other hand, 

reconfigurable NoCs, where network topology, 

routing protocols and even some of the IP cores can 

be altered, can deliver the optimal performance and 

power result across all the target applications. 

Through reconfiguration, hardware resources can be 

optimized for each application that often has 

different functionalities and communication 

characteristics from the other applications. Yet in 

this case, the trade-offs between the static 

compilation and the dynamic reconfiguration have 

to be carefully evaluated at the highest possible 

abstraction level of the NoC designs, particularly at 

the application scheduling and mapping level. 

     There have been several studies that attempt to 

deal with mapping of the multiple applications onto 

reconfigurable NoC architectures [8, 9]. In [8], a 

worst-case-based mapping method was proposed, 

where the cores and the NoC are mapped to satisfy 

the most serious constraints imposed by all the target 

applications. In [9], a method that maps multiple 

applications based on the traffic characteristics of a 

single application was proposed. After application 

mapping, a reconfigurable NoC is created by 

embedding programmable switches between any two 

routers of a mesh-based NoC, but these 

programmable switches unfortunately have very 

high area penalty which can impose a serious 

problem to NoC designs. Even more noticeable, 

neither of the two schemes [8, 9] has considered 

reconfiguration cost during the mapping and route 

determination process. 

     One big drawback of these approaches is that 
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they all target to find a suitable mapping solution 

without considering the cost associated with 

dynamic reconfiguration. In [18], a mapping flow is 

proposed for dynamic reconfigurable platform where 

reconfiguration cost is indeed minimized along with 

communication cost. However, scheduling, which 

preferably shall be considered along with the 

mapping, is actually absent from the proposed flow. 

    To address the above problems, a scheduling and 

mapping scheme is proposed, and this new scheme 

attempts to balance both the reconfiguration cost and 

the communication link cost. That is, in the core 

mapping phase, rather than mapping tasks directly 

onto the physical NoC, tasks are first mapped to 

virtual cores, which are then mapped onto the 

physical NoC. The proposed scheme thus is divided 

three major steps which include scheduling, core 

mapping, and eventually NoC architecture 

generation. 

In this paper, to overcome the aforementioned 

problems, an integrated scheduling and mapping 

scheme is proposed. In specific, when scheduling is 

performed, each task of the target applications will 

be first scheduled to virtual cores, after which these 

virtual cores will be mapped to the physical cores of 

a NoC. Note that reconfiguration cost is considered 

along this scheduling and mapping process, and thus 

the communication cost will be eventually 

minimized. 

The rest of the paper is organized as follows. In 

Section 2, a general dynamically reconfigurable NoC 

architecture is briefly introduced. The design flow 

and a motivation example are presented in Section 3. 

The three phases of the proposed design scheme are 

detailed in Section 4. Experiment results are reported 

in Section 5, and conclusions are finally drawn in 

Section 6.  

 

II. Dynamically Reconfigurable NoCs 

 

In a reconfigurable, mesh-based interconnection 

network that is of a concern to this paper, a router is 

connected directly to its adjacent routers and all the 

routers are connected to a reconfiguration controller, 

as shown in Fig. 1 [16]. Here the Reconfiguration 

Controller (RC) is tasked to control the 

reconfiguration process, and its basic components 

include the Repository, the Configuration Port (CP) 

and the Reconfigurable Interface (RI). The 

Repository contains a memory unit that stores the 

reconfigurable modules’ configuration data, bearing 

a great similarity to the configuration files used for 

configuring an FPGA chip. The RI is necessary to 

implement a static routing between a reconfigurable 

module and the rest of the system. All the 

reconfiguration-related activities, including changes 

of network topology, routing protocols and/or IP 

cores, are controlled by this reconfiguration 

controller. In general, dynamic hardware 

reconfiguration can only be implemented on 

dynamically reconfigurable devices. Thus, FPGAs 

are used in this study. 

Memory

Reconfiguration 

Controller

Configuration Port

Router 

Router Network 

Interface

R
e
c
o

n
f
i
g

u
r
a

b
l
e
 

I
n

t
e
r
f
a

c
e

IP Core

Network-on-Chip 

Network
ID 

Register

Reconfiguration 

Region

Configuration

Command
Router

Router

 
         

Fig. 1.  The Reconfigurable NoC model 

 

 

III. Problem Formulations 

 

Definition 1: A task graph TG (V, E) is an 

acyclic directed graph that represents an application, 

with each vertex vi ∈V, representing a task, and an 

edge between two vertices vi and vj, denoted as e(vi, 

vj) ∈E, representing a communication link between 

vi and vj. The weight of edge e(vi, vj) represents the 

communication bandwidth required between vi and vj. 

Definition 2: A core graph VP (U, L) is an 

undirected graph, with each vertex ui ∈U 

representing a virtual core node, and the edge 

between two vertices ui and uj, denoted as l(ui, uj) 

∈L, representing a communication link between ui 

and uj. The weight of edge l(ui, uj) represents the 

communication bandwidth between ui and uj. 

Definition 3: An NoC topology architecture 

graph AG (Q, R) is an undirected graph, with each 

vertex qi ∈Q representing a core node in the NoC 

topology and the edge between two vertices qi and qj, 

denoted as r (qi, qj) ∈R, representing a 

communication link between qi and qj. The weight of 

edge r (qi, qj) represents the communication 

bandwidth between qi and qj. 

      The problem that attempts to schedule and map 

multiple applications onto an Network-on-Chip 

architecture is defined as follows:  
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Given a set of applications, applications 1, 

2, …i,…, A, represented by a set of task graphs, TG 

= { TGi (Ti, Ri), i=1，…, || A }, and a number of IP 

cores, find a mesh architecture AG that connects all 

the IPs, and schedule and map these applications 

onto these IP cores with minimum communication 

cost, 

))(,(()(
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jj

E

j

j edestesourcedisteBtotalcom 


  

while satisfying the area and timing constraints. Here  

(i) area is determined as the number of mapped 

nodes on the AG; 

(ii) timing is defined as the scheduling time of the 

TG; 

(iii) ej is the flow in the input task graphs TG and E  

is the total number of flows of TG; 

(iv) B(ej) is the bandwidth of the flow ej  in the 

topology architecture described as AG; 

(v) Source(ej) and dest(ej) represent the source and 

the destination nodes of flow ej in the TG, 

respectively; 

(vi) dist(source(ej), dest(ej)) represents the hop count 

between source(ej) and dest(ej) with pre-determined 

routes in AG, assuming XY routing is adopted. 

     The above problem is a special case of processor 

scheduling that is known as NP-complete. Thus, a 

heuristic algorithm is developed to solve the above 

problem. In the literature, various topologies [2], 

including Mesh, torus, GNLS [16] and etc., have 

been proposed for NoC designs. In this paper, 

although we concentrate on the mesh topology, the 

proposed method can be readily applied to other 

topologies. 

 

 

IV. Design Flow of Scheduling and Mapping 

Applications onto Reconfigurable NoCs 

 

An example is given to illustrate how system 

performance is impacted when reconfiguration is 

considered during the scheduling and mapping stage. 

Two parallel applications a1 and a2 are shown in 

Fig.2.a and 2.b, respectively, and their respective 

core graphs generated after scheduling are shown in 

Fig.2.c and 2.d.  

If reconfiguration cost is not considered during 

scheduling/mapping, these two core graphs (Fig. 2.c 

and 2.d) are mapped to the topology one at a time. 

As a result, the total communication cost is 140 and 

the area cost is 5 (Fig. 2.g). But if reconfiguration 

cost is considered after scheduling, one can see that 

as V2 and V3 run at different time slots, they 

actually can be reconfigured and mapped to the same 

core as shown in Fig. 2.e. As such, the area cost now 

drops to 4, and its total communication cost is 132, 

as shown in Fig. 2.h. Further reduction of the 

reconfiguration cost is possible. Instead of having 

V2 and V3 run on the same core through 

reconfiguration, if V2 and V4 are actually mapped to 

the same core, as shown in Fig. 2.f, the area cost 

after scheduling and mapping remains 4, but the total 

communication cost decreases to just 127 (Fig. 2.i). 

 

IP0 IP1

IP2_3 IP4

T2

T1

T3 T4

T5

20 45 30

6 60 T2

T1

T3

T4 T5

25
10

35 20

V0

V1 V26

45 30

V0

V1 V3

10 35

V4

20

V0

V1 6

45 35

V4

20

V0

V1 V2_46

45 30

V3

20

IP0 IP1

IP3 IP4

IP2 IP0 IP1

IP2_4 IP4

(a) (b)

(c) (d)

(f)(e)

(g) (h) (i)

V2_3

Cost=140 Cost=132 Cost=127

Task graph1 Task graph2

a1 a2

Without reconfiguration Reconfiguration,without optimization Reconfiguration,optimized

V2,V3 merged V2,V4 merged

Multi-

application 

Combination

Scheduling

Mapping

 
Fig. 2 An example showing Scheduling and Mapping with and without 

task merging through reconfiguration 

 

    

The example illustrated in Fig. 2 has clearly 

indicated that communication cost can be effectively 

reduced without incurring additional hardware cost, 

if optimization on reconfiguration is performed 

along with scheduling and mapping. 

This study thus attempts to develop a scheme 

that can effectively schedule and maps applications 

onto multiple IP cores, meanwhile taking into 

account of the reconfiguration cost. Due to its NP-

completeness in nature, we attempt to solve the 

problem following a design flow that includes three 

phases:  

(1) During the scheduling phase (Phase 1), 

applications are scheduled onto the minimal number 

of virtual cores (as opposed to the physical IP cores) 

while meeting all the governing timing constraints. 
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(2) During the application merging phase (Phase 

2), applications that can share the same virtual core 

but run at different time slots are identified, and 

these applications are thus considered to be merged 

to minimize the reconfiguration cost.   

(3) During the final mapping phase (Phase 3), 

virtual cores are mapped to the physical cores in the 

way that the communication cost can be minimized. 

Note that the final NoC architecture is generated at 

this step.  

 

4.1.  Phase 1: Task scheduling 

 

In this phase, the proposed task scheduling 

algorithm takes the number of virtual cores and the 

application task graphs as its input. Note that, instead 

of directly mapping tasks to physical cores 

connected by a NoC architecture, we actually 

schedule them onto virtual cores. The number of 

virtual cores can be equal to or greater than the 

number of physical cores. In our current 

implementation, the number of the virtual cores is 

set to be the same as that of the physical cores. The 

main idea of this scheduling step is to put the tasks 

into the same group if their run times do not overlap, 

and then assign one virtual core to each task group. 

 

4.1.1. Scheduling Algorithm  

 

This algorithm tries to find a schedule for each 

application represented by a task graph. The input to 

the algorithm is the task graph of an application, and 

the output is a core graph represented by virtual 

cores and their connections. For simplicity, run time 

of each task on a virtual core is set to be exactly one 

cycle. The objective of this scheduling algorithm is 

to minimize the number of virtual cores in the output 

graph under the timing constraint. There are three 

major steps in the algorithm. 

Step 1, tasks are sorted by an ascending order of 

their start times.  

Step 2, schedule the task in the task list that has 

the earliest start time (i.e., the first entry of the task 

list) onto an available virtual core. Once a task is 

scheduled, it will be deleted from the task list. 

Repeat this process until all the tasks have been 

scheduled. 

Step 3, after all the tasks in the input task graphs 

have been scheduled onto the virtual cores, the 

connections among virtual cores have to be 

determined, following a policy given below:  

--If two tasks in the task graph are scheduled 

onto the same virtual core, there is no need to add an 

edge between them. 

--If two task in the task graph are determined to 

be scheduled onto two different cores, we need to (i) 

either find two virtual cores between which an edge 

shall be added, or (ii) specify the communication 

bandwidth between the two tasks, when an edge 

already exists between the two virtual cores. 

Detailed scheduling algorithm is given below.  

 

TaskScheduling { 

 

Input: 

T: Task Graph 

P: list of available Virtual Core (VP) cores 

Nv: the number of VP cores 

 

Output: 

The Core Graph of the application // see Def. 2 

in Section II 

 

Variable Declarations: 

 Here Q[v] records the time when virtual core, 

node v, becomes available;  

D[v] records the set of tasks running at each IP 

core;  
R

sT records the start time of task R;  

R

rT  records the run time needed to complete 

task R;  
R

sT +
R

rT  gives the scheduled time to complete 

task R. 

 

Procedure body: 

 

// Step 1 

(1) Initialize array Q[v] of each VP core by 

setting array Q[v] to null, here v=1, 2,…Nv. 

(2) Initialize the task set of each VP core by 

setting array D[v] to null, here v=1, 2,…Nv.; 

(3) Sort the tasks in ascending order of start time 

and save the sorted tasks as task list T’; 

 

// Step 2 

(4) If T’ is not empty, assign the first element in 

T’ to R, and then delete this element from T’; 

(5) Select node v from P such that Q[v] is 

minimized; 

(6) Schedule R to v by assigning the start time 

and run time to R; 

(7) Update Q[v] by having Q[v] <= 
R

sT +
R

rT  

(8) Add the first task in the list T’ to D[v] 

(9) Repeat lines between 4 and 8 until all the 

tasks in T’ have been mapped onto VP cores. 

 

// Step 3 

(10) Add edges among Q[v];  

(11)  Return the generated Core Graph; 
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} 

The complexity of this scheduling algorithm is 

bounded by the number of virtual cores. As each 

application is scheduled onto a virtual core through a 

two-loop iteration, the complexity of this algorithm 

is O(|Nv|
2
), where Nv is the number of virtual cores 

to be scheduled. 

 

4.1.2.  An Illustrative Example 

 

We take the benchmark from TGFF [17] as an 

example to illustrate the proposed task scheduling 

algorithm. As can be seen from Fig. 3, there are 13 

task nodes, of which maximum 5 tasks can be 

allowed to start at the same time. In this regard, at 

least 5 VP cores are needed to run all the tasks. The 

scheduling result after applying the proposed task 

scheduling algorithm is thus given as Fig. 4. 
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Fig. 3 A benchmark from TGFF[17] 

             
   

Fig. 4 Scheduling Result for the benchmark shown in Fig. 3 

 

 

      From Fig. 4, one can see that tasks 0, 5 and 10 

have been scheduled to execute on virtual core 0 at 

the 0
th
, the 1

st
, and the 2

nd
 clock cycles, respectively. 

The other tasks have also been scheduled to execute 

on other virtual processors. The output core graph 

after task scheduling is shown in Fig. 5, where the 

weight of each edge corresponds to the 

communication cost between the two connecting 

VCs. For instance, communication cost between 

VP0 and VP1 is 491. 

 

                  

VP0

VP3 VP4

VP1

VP2

1481

491

1476

997
975

 
 

 

Fig. 5 Core Graph generated after task scheduling as shown in Fig.. 4 
 

 

4.2. Phase 2: Merge of Multiple Applications and 

Minimization of Reconfiguration Cost 

 

In Phase 2, the proposed algorithm takes the core 

graphs (each consists of virtual cores and weighted 

edges) obtained from phase 1 as its input, while the 

output is one merged core graph. The objective here 

is to minimize the number of virtual cores in the 

output core graph while satisfying the timing 

constraints.  

 

4.2.1. Algorithm Description 

 

This algorithm attempts to find two graphs, from 

the output core graphs obtained in Phase 1, that can 

be merged into one graph. This core graph merging 

process is repeated until no more graphs can be 

merged.  

When an edge is identified to be merged with an 

existing edge, bandwidth between the two 

connecting virtual cores has to be updated to take the 

higher weight of the two edges. Then, two nodes can 

be merged assuming the longest communication 

bandwidth is maintained. 

 

GraphMerging { 

 

Input: 

Two applications, Application1 and Application 

2, represented by their respective core graphs cg1, 

and cg2 

MT is set as time constraint condition 

 

Output: 

      A core graph  

Time 
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Variable Declarations:  

       BW is the total communication bandwidth of a 

data flow graph.  

 

OptimalCombine(cg1, cg2, MT){ 

1) Merge common Virtual Core (VP) cores of cg2 

to cg1; 

2) Sort VP cores in cg2 according to ascending 

order of their total communication bandwidths, and 

put them into a list, L; 

3) If L is empty, go to Step 9;  

4) Get the first element (VP core) of L, and is 

recorded as n; 

5) Find core m from cg1 so that merging m with n 

will lead to the smallest BW; 

6) If  MT >0 then merge VP core n with m and 

then MT = MT-1; 

7) Else Add n into dfg1 as a new VP core; 

8) Delete n from L and go back to step3; 

9) Update bandwidths of all the edges; 

} 

The complexity of the algorithm is determined by 

finding the virtual cores from the two input core 

graphs that shall be merged. For each virtual core of 

one graph (cg1), all the cores of the other graph (cg2) 

have to be traversed once (Step 5). The timing 

complexity is thus O ( 21 NN  ), where N1and N2 

are cg1 and cg2’s numbers of the virtual cores, 

respectively. 

 

 

IP1

IP2 IP320

10 15

IP4

25

cg1 (a)

IP1

IP2 IP510

15 25

IP6

15

cg2 (b)

IP1

IP2 IP3_5
10

15 25

IP4_6

25

20

 (c)  
 
 

Fig.6 An Example showing merging of two core graphs (cg1 and cg2) to 
form a new core graph shown in (c) while minimizing communication 

bandwidth  

 

4.2.2. An Illustrative Example 

 

Suppose there are two core graphs, cg1 and cg2, 

derived from two applications, shown in Figs. 6.a 

and 6.b, respectively, and the timing constraint is set 

as 2. During the merging process, virtual cores IP1 

and IP 2 in cg2 are first merged with the same virtual 

cores in cg1. Next, IP 5 and IP 6 in cg2 are put into 

the list L. After searching through cg1, IP3 in cg1 is 

merged with IP5 in cg2 since merging of these two 

will result in the lowest BW while still satisfying the 

timing constraints. Next, IP4 in cg1 and IP6 in cg2 

are merged. Eventually, the merged core graph, with 

a communication bandwidth of 95, is shown in Fig. 

6.c.  

 

4.3.  Phase 3: NoC mapping and optimization 

 

The input of this phase is one core graph 

consisting of virtual cores and edges. The output of 

this phase is an mapped NoC architecture. The 

objective of this mapping step is to minimize the 

communcaiton cost under the timing and area 

constraints. There are three major steps in this 

algorithm. In the first step, an initial mapping is 

obtained, followed by a step where minimum path 

routing computation is performed. In the last step, 

the initial solution is iteratively improved by pair-

wise swapping of nodes, and finally the NoC 

architecture is generated. That is, this algorithm 

attempts to map all the virtual cores to the physical 

cores of the NoC. As two or more virtual cores may 

be mapped to one core on NoC, communication cost 

of the NoC has to be considered in this phase.  

 

4.3.1. Initialization 

 

     At the beginning, a mesh topology is first created 

with the minimum number of cores that shall be able 

to accommodate all the cores in the core graph. That 

is, for a core graph with N cores, a  N  by  N  

mesh needs to be created. For instance, if there are 8 

cores in the merged core graph, a mesh with 9 cores 

is created. The virtual core with the largest number 

of neighbors in the core graph is first mapped to an 

available core in the mesh with the largest number of 

neighbors. Next, of the core that have not to be 

mapped, the one which has the highest 

communication cost with the already mapped cores 

is selected for mapping. This procedure is repeated 

until all the cores in the core graph have been 

mapped onto the mesh architecture.  

 

4.3.2. Routing Determination 

 

The shortest routing is performed after the initial 

mapping. The total communication cost can be 

calculated using the shortest paths between any pairs 

of the source and the destination nodes. A quadrant 

graph is created between the source and the 

destination, as the shortest path between the source 

and the destination sits within the quadrant that they 

belong to. Then, Dijkstra’s shortest path algorithm is 
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applied to the quadrant graph and the minimum path 

is obtained. 

4.3.3. Mapping Optimization and NoC Architecture 

Generation 

 

In this phase, a heuristic simulate-annealing-based 

algorithm is used to generate the final mapped NoC 

topology with the minimum total communication 

cost. In essence, a pair of nodes are selected from the 

initial mesh (Section 4.3.1) and they get swapped, 

after which routing is performed to calculate the 

corresponding communication cost. If the 

communication cost  of this newly mapped NoC 

topology is lower, it will be considered as a better 

solution and optimization will continue from this 

updated topology. Above procedure is repeated until 

no further optimization is possible, and the mapped 

NoC topology is finally generated. The complexity 

of this routine is relative to size of the mesh. As the 

number of nodes increases, there will be greater 

opportunities for node swapping. 

 

             V. Experimental Results 

 

To evaluate the performance of the proposed 

algorithms as described in Section 4, a couple of 

experiments using an in-house developed platform 

have been performed. In specific, a 2D mesh-based 

NoC is designed with 16-bit wide channels. Routers 

in this NoC support wormhole packet switching and 

deterministic XY routing. Benchmarks include 

TGFF suites [17] and real-world applications. 

In this first set of experiments, we apply the 

proposed algorithm to TGFF Benchmarks. Table 1 

reports the scheduling results of 4 TGFF benchmarks 

after phase 1 (Section 4.1) is completed. In the 

second and third columns of the same table, the 

numbers of the nodes and the edges of the input task 

graphs are given,  

respectively. For comparison, the fourth and the fifth 

columns, respectively, report the numbers of nodes 

and edges in the output core graph. 
 

Table 1. Scheduling Results (Phase 1 described in Section 4.1) 

Bench 

mark 

No.  

Nodes  

At 
TG  

 

No. of  

Edges at  

Task 
graph 

No. of  

Nodes 

at  
Core  

Graph 

No.of  

Edges  at 

Core  
graph 

Schedul-

ing  

Time 
 (Cycles) 

tgff1 

 

23 

 

31 6 11 35 

tgff2 

 

18 

 

23 5 9 30 

tgff3 

 

12 

 

14 4 5 25 

tgff4 

 

15 

 

22 4 6 30 

 

The scheduling time is given in the sixth column, 

where each node is assumed to run at 5 clock cycles. 

It can be seen that after scheduling, the number of 

cores in the output core graph is much less than that 

of the tasks in the input task graph. Some tasks are 

scheduled to the same core to reduce the number of 

the nodes in the output core graph. The number of 

communication edges in the output core graph is also 

much lower than that of the input task graph for the 

same reason. 
 

Table 2. Task Graph Merging Results 

Bench 

mark 

Nodes Edge

s 

 

Scheduling 

Time 

(Cycles)  
Before 

Scheduling  

Time 

(Cycles) 
After 

tgff1* tgff3 6 11 80 60 

tgff2* tgff4 5 9 75 60 

tgff2* tgff3 

*tgff4 5 9 

100 

85 

tgff1*tgff2* 
tgff3*tgff4 6 13 

 
135 125 

 

In the second column of Table 2, various 

combinations of TGFF benchmarks are shown. For 

instance, benchmark tgff1*tgff3 indicates that the 

core graphs of tgff1 and tgff3 are merged. In 

tgff1*tgff3, there are 6 nodes (the third column) and 

11 edges (the forth column). When tgff1 and tgff3 

are executed in series, a total of 80 cycles is needed 

(the fifth column) as opposed to 60 cycles needed to 

schedule merged graph tgff1*tgff3 (the sixth 

column). In this case, the scheduling time of the 

merged graph is reduced by 15%. Here 

reconfiguration time between cores is set to be 2 

cycles.  

As certain cores can be reused through 

reconfiguration, the number of cores (nodes) in the 

merged graph is reduced dramatically, as shown in 

Fig. 7, which can be translated into significant area 

saving. Take the tgff1*tgff3 as an example: the 

number of cores is reduced. 

 

0
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1 2 3 4

IPCoresUnCombined IPCoresCombined

 
 

Fig. 7 the number of cores before the merging of the core graphs vs. the 

number of cores after the merging  

 

from 10 (before merging) down to 6 (after merging). 

Finally, a merged graph is mapped to the actual 

mesh NoC, and the final mapping results are 
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tabulated in Table 3. In our experiment, we define a 

hotspot on an NoC is a core that experiences 30% 

more traffic than an average core. In the third 

column, the number of hotspots on the NoC for each 

application after final mapping is given. For instance, 

both tgff1*tgff2 and tgff2*tgff4 have 2 hotspot while 

for the other two applications, each has 3 hotspots. It 

is shown that our algorithm applying on NoC with 

more hotspots can achieve more reductions on 

communication cost. 

 
 

Table 3 Mapping Results of Various Applications onto NoCs 

Benchmark No.  

Cores  

 

Hot 

Spot 

Initial  

Comm. 

Cost  

without  
reconfiguration 

Optimal  

Comm. 

Cost with  

reconfiguration 

tgff1* 

tgff3 

 

6 2 1785 1664 

tgff2* 
tgff4 

 
5 2 1998 1733 

tgff2*tgff3 

*tgff4 

 

5 3 2014 1751 

tgff1*tgff2
* 

tgff3*tgff4 

 
 

6 3 2788 2200 

 

In Table 3, the initial communication cost 

without reconfiguration is given in the fourth column, 

while the optimal communication cost with 

reconfiguration is reported in the fifth column.  

For instance, an NoC with 6 cores (the second 

column) is generated for benchmark tgff1*tgff3, 

where 2 hotspots exist (the third column). The 

communication cost without reconfiguration is 1785 

(the fourth column), while the communication cost is 

reduced to 1664 with reconfiguration (the fifth 

column). The most significant reduction on 

communication cost is achieved for benchmark 

tgff1*tgff2*tgff3*tgff4 (Table 3), where 

communication cost is reduced from 2788 cycles to 

2200 cycles, a merely 21.2% reduction      

 B Evaluation of the proposed scheme using real 

applications running on a set-top box SoC 

We have also evaluated the performance of the 

proposed algorithm by applying it to real-world 

applications. In particular, five applications run in a 

SoC for set-top box are adopted, as given in Fig.8. 

We present the experimental results for the 

applications running on 4 different configurations: (i) 

applications A1 and A2 running on P1, (ii) 

applications A2, A3 and A4 on P2, (iii) applications 

A1 ,A2 , A4 and A5 on P3, and (iv) applications A1, 

A2, A3, A4 and A5 on P4. After the merging 

algorithm is completed for each design (Phase 2 in 

Section 4.2), the results are given in the Fig. 9. 

The numbers of cores before and after the 

merging process for all 4 designs are reported in 

Fig.10.a. For P1, 14 cores is actually needed if no 

core is merged (the second vertical bar in Fig. 10.a), 

and that number can be reduced to 7 (the first 

vertical bar in Fig. 10.a) if some cores can be shared. 

Across all four designs, on average, the number of 

cores needed is reduced by more than 50% with 

cores can be shared among applications through 

reconfiguration.  Actually, one can see that the more 

cores can be shared, the more significant of area 

saving a design can achieve, as the case in P4.  

The numbers of communication links before and 

after the merging process for all 4 designs are shown 

in Fig. 10.b.   
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Fig. 8. Five applications running on a top-box SoC 
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Fig. 9. The core graphs after merging for four designs. 

 

 

For P1, 15 links is actually needed if no core is 

merged (the second vertical bar in Fig. 10.b), and 

that number can be reduced to 9 (the first vertical bar 

in Fig. 10.b) if some cores are shared. Across all four 
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designs, on average, the number of communication 

links needed is reduced by more than 50% when 

core sharing among applications is possible through 

reconfiguration.  Actually, one can see that the more 

cores can be shared, the less communication links 

needed to connect all the communicating cores, as 

the case in P4. 

Finally, the generated mesh architectures for 

each of the four designs are shown in Fig. 11. 
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                                                     (b) 

Fig10 Experimental results for four designs (a) Core reduction due to 

core sharing through reconfiguration (b) Communication link reduction 
due to core sharing through reconfiguration 
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Fig.11. Optimal mesh topology generated 

 

 

VI. Conclusions 

 

In this paper, a scheduling and mapping multiple 

applications on dynamically reconfigurable NoC was 

proposed to help minimize the communication cost, 

while satisfying the timing, area and other applicable 

design constraints. To save area, applications that 

can be mapped onto the same hardware resource but 

run at the different time instances through 

reconfiguration are identified, and the cost incurred 

in reconfiguration is actually considered along with 

application scheduling and mapping. The experiment 

results have shown that the proposed method has 

achieved 50% area reduction than a conventional 

scheme that does not consider reconfiguration cost.  
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